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Entropy-driven electron density and effective model Hamiltonian for boron systems
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The unique electron deficiency of boron makes it challenging to determine the stable structures, leading to
a wide variety of forms. In this work, we introduce a statistical model based on grand canonical ensemble
theory that incorporates the octet rule to determine electron density in boron systems. This parameter-free
model, referred to as the bonding free-energy (BFE) model, aligns well with first-principles calculations and
accurately predicts total energies. For borane clusters, the model successfully predicts isomer energies, hydrogen
diffusion pathways, and optimal charge quantity for closo-boranes. In all-boron clusters, the absence of B-H bond
constraints enables increased electron delocalization and flexibility. The BFE model systematically explains
the geometric structures and chemical bonding in boron clusters, revealing variations in electron density that
clarify their structural diversity. For borophene, the BFE model predicts that hexagonal vacancy distributions
are influenced by bonding entropy, with uniform electron density enhancing stability. Notably, our model
predicts borophenes with a vacancy concentration of 1

6 to exhibit increased stability with long-range periodicity.
Therefore, the BFE model serves as a practical criterion for structure prediction, providing essential insights into
the stability and physical properties of boron-based systems.
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I. INTRODUCTION

Effective models are commonly used to capture the prop-
erties of condensed-matter systems by focusing on critical
interactions. These models often serve as alternatives or
preparatory steps for costly experiments [1]. In realistic mate-
rials, model parameters are usually derived from experiments
or first-principles calculations, like density-functional theory
(DFT) [2,3]. Electron density, which describes the spatial
probability distribution of electrons, is a fundamental quan-
tity that provides key insights into material properties. The
Hohenberg-Kohn theorems [4] establish that the ground-state
electron density determines the lowest energy of a system with
a bijective map. A major objective now is to develop methods
for determining effective Hamiltonians and electron densities
of complex systems with lower computational costs.

Without relying on quantum theory, the shared electron-
pair bonding model proposed by Gilbert Lewis [5] captures
many aspects of chemical bonding, offering a practical frame-
work for understanding molecular structure. To build on the
electron-pair model, Langmuir [6] and Kossel [7] introduced
the octet rule, which states that main-group elements in the
second period tend to gain, lose, or share electrons to achieve
a complete octet in their outermost energy level. However, the
octet rule is a phenomenological theory that mainly applies
to simple molecules and does not address the complexities
of systems with electron delocalization [8]. Valence-bond
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(VB) theory and molecular-orbital (MO) theory, through
parametrization, offer quantitative estimates of molecular sta-
bility [9]. As shown in Fig. 1(a), VB theory emphasizes the
combination of localized atomic orbitals to form chemical
bonds, while MO theory describes how delocalized electrons
stabilize a molecule by distributing over the entire structure.
Developed from self-consistent iterations, DFT uses Kohn-
Sham equations [4] to determine electron density in quantum
systems. Although machine-learning (ML) algorithms with
robust neural networks have become popular, their complex
parameters [10,11] can obscure underlying physical princi-
ples, making it challenging to obtain a clear understanding
of bonding and stability. Therefore, a parameter-free model
based on clear chemical concepts is urgently needed to ex-
plore the intrinsic nature of chemical stability.

While the octet rule provides a foundation for understand-
ing electronic structures in molecular systems, it often falls
short in explaining electron delocalization. On a potential
energy surface (PES) like Fig. 1(b), the ground state is a
resonance hybrid structure with lower energy, which is the
combination of single Lewis structures. The classic example is
benzene, where the actual electron density can be successfully
expressed as the average of two base Kekulé structures in
Fig. 1(c), corresponding to the PES shown in Fig. 1(b). These
examples show that electron density and effective Hamilto-
nians can sometimes be simplified in systems with electron
delocalization.

Boron, with its electron deficiency [8], forms unique B-
H-B bridge bonds, observed in infrared spectra [12] and
described as three-center two-electron (3c-2e) bonds. W. N.
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FIG. 1. (a) Current popular theories of understanding chemical bonding. (b) A potential energy surface, where red represents high energy,
and blue represents low energy. (c) Benzene with two based Kekulé structures and the averaged structure. (d) Existing chemical bonds of the
boron system and B5H9 molecule.

Lipscomb et al . developed the STYX rules to outline electron
assignments among B and H atoms in terms of two-center
two-electron (2c-2e) and 3c-2e bonds. However, these rules
overlook dominant resonance in systems with electron de-
localization [13], and previous models struggle to balance
stability and electron density predictions. The adaptive natural
density partition (AdNDP) method [14] suggests that charge
can be divided into multiple two-electron multicenter bonds,
but it does not predict stability. The σ -bond resonance [15]
has been proposed to understand flat boron material bonding
but lacks predictive power for structural stability. Gaussian
approximation potential [16] accurately describes the PES of
boron but does predict electron density distribution. Here, we
assume full occupation of B-H and B-H-B bonds, as hydrogen
atoms follow the duplet rule. Bonds involved in resonance
include B-B 2c-2e and B-B-B 3c-2e bonds, shown in the top
panel of Fig. 1(d). For the nido-B6H10 molecule, six B-H
bonds and four B-H-B bonds are fully occupied as marked in
red in the right panel of Fig. 1(d). The remaining eight elec-
trons fill the B-B and B-B-B bonds in the pyramid, achieving
optimal electron density within the constraint of the octet rule.
An accurate model should capture this electron density and the
model Hamiltonian.

In this work, we introduce a parameter-free statistical
model based on the octet rule for boron systems, including
neutral and charged boranes, planar clusters, hollow cages,
and monolayers with periodic structures. In boranes, B-H
bonds and B-H-B bonds are localized, leading to a relatively
sparse PES. In all-boron clusters, the PES is dense, with
localized bonds at the edges of hexagonal vacancies. The de-
localized bonds in boron monolayers lead to stable structures
with long-range periodicity. Total energies and electron den-
sity distribution predicted by our model are in good agreement
with first-principles calculations, providing deeper insights
into the physical properties of these structures.

II. STATISTICAL METHOD

We take a molecule with Nbond bonds and Nele electrons as
an example to provide a detailed explanation for calculating
the free energy of the bonds, where each bond possesses ni

electrons with a corresponding chemical potential μi. The
grand canonical partition function is defined by

Z =
∑

n1,n2,..., nNbond

e− ∑Nbond
i=1 (niαi+βEi ), (1)

where reduced chemical potential αi = − μi

kBT . All electrons
have been allocated to form single B-H bonds and 3c-2e
B-H-B bonds, and

∑Nbond
i=1 ni = Nele. Here, we regard Ei for all

bonds as equal, which means that the electron can be equally
allocated to each bond and is set to zero for convenience.
Nele electrons need to allocate to Nbond bonds, and the degen-
eracy for the combinations is the multinomial coefficient C,
which is

C =
( Nele

n1, n2, ..., nNbond .

)
(2)

This formula is corresponding to the multinomial formula

(e−α1 + ... + e−αNbond)Nele =
∑

n1,...,nNbond

( Nele

n1, ..., nNbond

)
e− ∑Nbond

i=1 niαi ,

(3)
where ( Nele

n1,n2,...,n6
) = Nele!

n1!n2!...nNbond ! . Therefore, we can deduce

that the grand canonical partition function is

Z = (e−α1 + e−α2 + ... + e−αNbond )Nele . (4)
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FIG. 2. (a) The electron allocation model for borane, three full-occupied chemical bonding of B5H9, and the optimal electron density
determined by BFE and DFT. (b) The BFE surface varied with p1 and p2.

We then express the formula for free energy

F = −kBT logZ − kBT
Nbond∑
i=1

αi
∂ log Z

∂αi

= −NelekBT

[
log

(
Nbond∑
i=1

e−αi

)
+

∑Nbond
i=1 αie−αi∑Nbond

i=1 e−αi

]
. (5)

The average number of electrons in the bonds i is given by

ni = − ∂F

∂μi
= Nele

e−αi∑Nbond
i=1 e−αi

. (6)

Here, we define the electron probability for bond i as

pi = ni

Nele
= e−αi∑Nbond

i=1 e−αi
, (7)

subsequently, the bonding free energy (BFE) can be
expressed by

F = NelekBT
Nbond∑
i=1

pi log pi, (8)

and the bonding entropy is defined by

S = kB

(
logZ −

Nbond∑
i=1

αi
∂ logZ

∂αi

)

= −NelekB

Nbond∑
i=1

pi log pi. (9)

It is significant to note that the total energy is roughly
proportional to the number of electrons Nele in the system,
and the bonding entropy is also roughly proportional to
log Nele. We can rewrite the BFE by introducing the equivalent

“temperature,”

F (p1, ..., pNbond ) = NelekBT0

log Nele

Nbond∑
i=1

pi log(pi ), (10)

where the equivalent “temperature” T is T0
log Nele

, T0 is the
equivalent “standard temperature,” and kBT functions as the
coefficient to ensure that BFE is an extensive quantity. Under
the octet rule constraint for each atom, Eq. (10) determines the
BFE of a system as a function of pi, where the minimal BFE
corresponds to the ground state of a system.

III. RESULTS AND DISCUSSIONS

A. Determining the electron density
by the parameter-free BFE model

While the proposed 2c-2e and 3c-2e bonds offer some
insights into the chemical bonding of boron, quantitatively de-
termining electron density and accurately predicting structural
stability remain significant challenges. As illustrated in the
upper part of Fig. 2(a), the total electrons are distributed across
all possible bonds for B6H10 molecule, necessitating the iden-
tification of an optimal electron density distribution. Given
that each atom must adhere to the octet rule, a series of reso-
nance structures exist that satisfy local constraints, as depicted
in the middle section of Fig. 2(a). All bonds are fully occupied
or not occupied in these structures, consistent with the STYX
rule [17]. However, these three resonance structures do not
accurately represent the actual electron density determined
by density-functional theory (DFT), as shown in the lower
right corner of Fig. 2(a), nor do they account for molecular
symmetry. Combining the three resonance structures is a way
to solve the electron density. However, resonance coefficients
are unknown and not easily obtained. Although S1, S2, and
S3 comply with the local octet rule, each bond’s occupation
numbers (ONs) are restricted to either zero or one. This binary
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representation fails to capture the critical feature of electron
delocalization.

Here, we propose a precise yet intuitive statistical model to
determine the electron density distribution, balancing the local
octet rule for each atom with the global electron delocalization
of the total valence electrons. The statistical ensemble aver-
ages across all resonance structures, weighted appropriately,
can reflect the actual electron density distribution [18–20].
According to grand canonical ensemble theory, the bond-
ing free energy (BFE) is derived from the grand partition
function referred to in Eq. (10). According to the exper-
imental and theoretical studies [21,22], boron clusters are
composed of fragments of triangular lattices with vacancies,
while borophenes typically feature the triangle lattice struc-
tures with hexagonal vacancies, where the bond lengths in
these structures are generally between 1.65 and 1.92 Å[22].
For given boron structures, if the distance between two boron
atoms is within the bond length range, they are considered to
be bonded, forming a two-center, two-electron bond. If the
distances between three atoms are all within the bond length
range, they are considered to form a three-center two-electron
bond. Therefore, the number of all B-B bonds and B-B-B
bonds will be easily determined.

A detailed derivation of the BFE is provided in the Sup-
plementary Material (SM) [23]. Notably, the BFE exhibits a
linear correlation with Sb, reaching its minimum when the
bonding entropy is maximized by the principle of maximum
bonding entropy.

Each B atom must adhere to the octet rule and each H
atom to the duplet rule, as illustrated in the upper right corner
of Fig. 2(a), where p1 and p2 represent the electron proba-
bilities of the two B-B-B bonds. Under this local constraint,
the BFE varies with p1 and p2 as depicted in Fig. 2(b). The
base resonance structures S1, S2, and S3 are indicated, with
corresponding high BFEs marked at the endpoints of the BFE
in Fig. 2(b). These points signify that the full occupation of the
chemical bonds is unstable due to the lack of electron delocal-
ization. As the mean electron density of the base resonance
structures, the Smean has lower BFE than the three resonance
structures. The global minimum BFE, corresponding to the
electron density distribution S∗, is exemplified in the bottom
left corner of Fig. 2(a), which is lower than Smean. S∗ supplies
a reasonable method to determine the optimal resonance co-
efficients of the resonance structures as detailed in SM [23].
For clarity, colors represent the expected electron count for
each bond, ranging from 0 to 2, as shown by the left color bar.
The green B-B bond indicates one occupied electron. In con-
trast, the blue B-B-B bond signifies half an occupied electron,
reflecting the resonance structure of all potential Lewis struc-
tures and illustrating how electron delocalization enhances
stability significantly. S∗ aligns well with the electron density
calculated by DFT, as shown in the lower section of Fig. 2(a).
Beyond the typical B6H10 molecule, the electron densities of
other nido-BnHn+4 molecules are detailed in the Fig. S1 of
SM [23], demonstrating strong consistency with DFT cal-
culations. This evidence suggests that the BFE accurately
describes electron density, indicating a tendency for electrons
to exhibit a uniform distribution within the constraints of the
octet rule.

From the view of information entropy, the bonding en-
tropy serves as a quantitative measure of how uninformative
a probability distribution is, ranging from zero (completely
informative) to log(p) (completely uninformative). Given the
available information, we adopt the most uninformative dis-
tribution possible by selecting the distribution that maximizes
bonding entropy. Opting for a distribution with lower en-
tropy would imply the assumption of information that we do
not possess. Thus, the distribution with maximum entropy
emerges as the most reasonable choice, forcing the electron
distribution to be more uniform, achieving the lowest elec-
trostatic potential state. The method inspires us to establish
a realistic electron density distribution for delocalized elec-
tron systems with the octet rule and the maximum entropy
principle.

B. The neutral and charged boranes

Since the minimal BFE has accurately determined electron
density, the BFE can be treated as a model Hamiltonian to
describe the total energy of the boron system, thereby pre-
dicting structural stability. We use the B5H7 molecules as an
example, generated by removing two hydrogen atoms from
the B5H9 molecule, as illustrated in Fig. 2(a), to construct a
series of borane isomers. Each isomer can be analyzed using
the BFE model, with the electron density determined by the
minimal BFE. As shown in Fig. 3(a), the relative energies of
the isomers correlate well with the predicted Fb calculated by
the BFE model, indicating that our model effectively discrim-
inates the stability of B5H7 isomers. Among these, the most
stable isomer loses one B-H bond and one B-H-B bond, as
shown in the left part of Fig. 3(a). The color of each bond
reflects the localization and delocalization according to the
color bar in Fig. 2(a), with the electron density in this stable
structure appearing notably more uniform compared to the
higher-energy structure on the right.

For the B8H12 molecule, we construct a diffusion path for
the hydrogen H atom along the direction indicated by the ar-
rows in Fig. 3(b). Along this path, the H atom traverses the top
site of one B atom, the bridge site between two B atoms, and
the center site formed by three B atoms. The transition-state
images along the diffusion path can be described using the
BFE model, enabling us to infer the variation of Fb along the
path, represented by the orange line in Fig. 3(b). To validate
our predictions, we employed the CI-NEB method [24] to
accurately calculate the minimal energy path, as shown by
the light blue line in Fig. 3(b). The energy variation trend of
the H atom during the diffusion process aligns well with the
predictions of the BFE model. Notably, both methods indicate
that the structure with the H atom at the bridge site is typically
higher in energy than that with the H atom at the center site of
three B atoms. This difference arises because the H atom at the
bridge site forms an additional B-H-B 3c-2e bond. In contrast,
the H atom at the center site forms three B-H-B 3c- 2

3 e bonds,
with 2

3 e contributing to a more substantial electron delocal-
ization effect that enhances structural stability. Notably, the
transition state corresponding to the maximum energy barrier
is identified as index 4, where the H atom is located at the
bridge site, as detailed in Fig. 3(b).
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FIG. 3. (a) The energy scatter plot of B5H7 isomers predicted by BFE and DFT. (b) BFE and DFT determine the transition energy path
calculation. (c) The total energy of B12H12 molecule for the number of additional electrons.

For the closo-borane BnHn clusters, the most prominent
and well-known species is the closo-dodecaborate B12H122−

dianion [25,26]. Its derivatives are also significant in var-
ious fundamental and applied research fields [27,28], with
boron-based neutron capture therapy for cancer being partic-
ularly notable [29]. Interestingly, two extra electrons are often
required to enhance structural stability, reflecting the electron-
deficient nature of boron. Previous theoretical studies have
employed the coupled-cluster singles and doubles (CCSD)
approach with the cc-pVDZ basis set to elucidate the reasons
for the high stability of the dianion icosahedron [30]. The
second difference of the total energies, defined as D2(N ) =
2EN − EN−1 − EN+1, where N represents the charge of the
cluster, provide valuable insights for determining the most
stable configuration. As shown by the green line in Fig. 3(c),
D2(2) is the lowest among various charge states, indicating
that the addition of two electrons yields the most stable state
for the B12H12 molecule. Herein, the BFE model also predicts
that these additional two electrons significantly enhance struc-
tural stability. The neutral B12H12 molecule has 48 electrons,
and the BFE model determines the optimal electron density
distribution when Fb is minimized, as illustrated in Fig. 3(c).
If one additional electron is added, resulting in 49 electrons,
the allocation aims for a new optimal uniform electron den-
sity. However, the Fb averaged per electron is lower than
that of the neutral state, suggesting that the extra electron
compensates for boron’s electron deficiency. Although boron
is inherently electron deficient, an accumulation of excess
electrons can raise the system’s electrostatic potential energy,
causing structural instability. Thus, it is imperative to achieve
a balance. The BFE model further predicts that the most stable
configuration should accommodate two additional electrons,
demonstrating the model’s strong predictive capability. Fur-
thermore, the other closo-borane BnHn (n = 6 − 11) clusters
are analyzed in Figs. S2 and S3 in SM [23], also in agreement
with the DFT calculations [31].

C. The planar clusters, hollow cages, and bilayer clusters

The evolution of geometric structures and chemical
bonding for boron clusters is significant in searching for new-
generation boron-based materials. However, achieving this
understanding has proven challenging, necessitating over a
decade of sustained collaborative experimental and theoretical
investigations. The highly stable planar B36 cluster, which
exhibits sixfold symmetry and possesses a central hexagonal
hole, was observed experimentally, as shown in the inset of
Fig. 4(a) [21]. The valence shell of the B36 cluster is expected
to be filled with eight shared electrons according to the octet
rule, based on 2c-2e and 3c-2e bonds. Here, the 2c-2e bond
refers to the B-B bond, while three nearest-neighbor B atoms
form the 3c-2e bond. Assuming there are n1 2c-2e bonds
and n2 3c-2e bonds in the B36 cluster, we have the equa-
tions 2n1 + 2n2 = 36 × 3 and 4n1 + 6n2 = 36 × 8, leading to
n1 = Nele and n2 = 36. The electron density determined by
the BFE model, shown in the inset of Fig. 4(a), is consistent
with DFT calculations. Notably, the 3c-2e bonds adjacent to
the edge B atoms are fully occupied, while other 3c-2e bonds
are half occupied. Similarly, the 2c-2e bonds adjacent to the B
atoms at the six external vertices are fully occupied, whereas
those adjacent to the six internal vertices and located at the
center of the external edge are half occupied, exhibiting high
consistency with the DFT calculations.

Notably, all B-B bonds vanish except those at the edges,
as 3c-2e bonds replace the inner B-B bonds. Given that the
coordination number of inner B atoms is six, 3c-2e bonds are
preferentially formed to ensure that each B atom satisfies the
octet rule, reflecting the electron-deficient nature of boron.
Each external-edge B atom shares two fully occupied B-B
single bonds. In comparison, internal-edge B atoms share two
half-occupied B-B single bonds due to their greater coordi-
nation and the prevalence of 3c-2e bonds. The half-occupied
state can be viewed as a neutralization between full and
empty occupancy as illustrated in Fig. 4(a), and the “Taijitu”
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FIG. 4. (a) The electron density of B36 and the decomposed Kekulé structures. (b) The energy predicted by the BFE model and DFT for
B36 with one vacancy and B56 with two vacancies. (c) The evolution prediction of different styles of boron clusters, with the electron density
and local aromaticity plotted in (d).

representation suggests that two fully occupied electronic
densities achieve an optimal balanced distribution through
complementary interactions. Similar to the benzene molecule,
the electron density in the B36 cluster can be regarded as the
average of two Hückel structures.

In addition to electron-density analysis, we can utilize the
Fb to predict the structural stability of B clusters. For the B36

clusters, the hexagonal hole can interchange with neighboring
B atoms, as illustrated in the right part of Fig. 4(b). Notably,
the B36 cluster with sixfold symmetry exhibits the lowest Fb

and formation energy, while the energy of other B36 clusters
increases with decreasing Fb, maintaining a strong linear re-
lationship. As the energy of the three B36 clusters gradually
increases, their electron density distributions become increas-
ingly nonuniform, with a growing number of fully occupied
B-B 2c-2e bonds. In the case of the B56 cluster, characterized
by a double-hexagonal vacancy, varying vacancy distributions
induce diverse electron densities and structural stabilities. Fb

exhibits a linear correlation with Eform, indicating that the BFE
model effectively predicts stability for clusters with double-
hexagonal vacancies. Furthermore, these specific double holes
are characteristic of two-dimensional stable B sheets, such as
the α-B sheet [32–34], serving as a key motif for stable B
sheets.

For the larger B clusters, we will demonstrate how Fb can
provide insights into the evolutionary process of B clusters
with varying sizes using several boron clusters with similar

total energies. For each boron cluster, the bar chart from left to
right corresponds to isomers with gradually increasing energy
as shown in Fig. 4(c), and the lowest relative bonding entropy
is set to 0.01 for easy presentation, in which the most stable
B clusters are plotted in Fig. 4(d), and other clusters are
shown in SM [23]. For the B38 [35] and B40 [36], the most
stable structures are both cagelike with hexagonal vacancies
of the largest bonding entropy, where the planar clusters and
double-ring clusters are less stable with lowest bonding en-
tropy. Since the number of B atoms with a coordinate number
(CN) of 5 in the cage clusters is larger than that of planar and
double-ring clusters, as well as the number of 3c-2e bonds
[see Fig. 4(d)], the ONs of cage clusters are more uniform,
inducing the largest bonding entropy. When the size becomes
larger, the most stable cluster evolves to triple-ring (B42) and
double-layer (B54 [37] and B63 [38]). At the same time, other
types of boron clusters are relatively more energetic with less
bonding entropy.

Particularly, we take B63 as an example to define the
local aromaticity of B atom i, κi = −∑

j pi j log pi j , where
j traverses all bonds connected with B atom i. The six
central inward-buckled B atoms with red color display the
largest value, exhibiting typical aromaticity, while the edge
atoms with blue color show less aromaticity, which is also
in agreement with the nucleus-independent chemical shifts
(NICS) value as referred to SM [23]. The six hexagons cen-
tered around these central inward-buckled B atoms resemble
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FIG. 5. (a) The energy scatter plot of borophene with various vacancy distributions predicted by BFE and DFT. (b) The energy scatter
plot of different vacancy concentrations predicted by BFE and DFT. (c) The Eform predicted by DFT and Fb predicted by the BFE model for
borophene with η = 1/6. (d) The most stable borophene structures S2/S4 in a two/four-period arrangement with η = 1/6, along with the
electron density determined by the BFE model.

benzene rings (C6H6), and the local solid aromaticity effec-
tively enhances the system’s stability.

D. Borophenes with long-periodic structures

For boron monolayers, the triangular sheets by carving
hexagonal vacancies will be stable, where vacancy concen-
tration η is defined by the ratio of the number of hexagon
vacancies to the number of atoms in the pristine triangular
sheet [34]. Previous works reported that the α-borophene is
the most stable monolayer for the largest cohesive energy
per atom in DFT calculation [32,33] for the vacancy con-
centration is η = 1

9 , which is formed by removing one B
atom from a 3 × 3 supercell of triangular lattice. To verify
the model capability, we generate the no-equivalent struc-
tures with four hexagonal vacancies in 6 × 6 supercell using
SAGAR code developed by our group [39] and calculate the
Fb by BFE model and total energies by DFT calculations
of these structures, exhibiting the excellent consistency as
shown in Fig. 5(a). Among these structures, the most stable
structure is α-borophene, and the most unstable one is in
the bottom right of Fig. 5(a), which contains four X-type B
atoms with CN of 4. Note that the borophene with X-type B
atoms is unstable for the absence of resonance [15], and the
quantitative BFE model also shows that electron density dis-
tribution is pretty nonuniform, contributing to the instability.
Two-dimensional borophene exhibits polymorphism, where
the ground-state structures are intrinsically independent of η.

The octet rule only applies to the borophene with η = 1
9 . In

contrast, borophenes with other vacancy concentrations can
not obey the octet rule due to the electron deficiency [40],
in which the additional electron should be compensated into
the borophene. Therefore, the average Fb−ave which is defined
by the ratio of Fb to total electrons to evaluate the structural
stability for various vacancy concentrations as detailed in SM
[23]. As demonstrated in Fig. 5(b), the prediction by the
BFE model has good correlations with the DFT calculations.
Moreover, the borophene with η = 1

8 is the most energetic
rather than α-borophene among these borophenes with η =
1

12 − 1
5 , as an evidence to show the generality of our model.

The borophene with η = 1
8 , which has the lowest Fb-ave, can

be viewed as the adjoint of two mirrored α-borophene [41],
implying the polymorphism of two-dimensional boron. The
electron density distributions of borophene with other vacancy
concentrations are detailed in SM [23], where the electron
density will aggregate around the vacancies, diminishing the
structural stability.

Although it seems that there is a significant difference
between the DFT and BFE models at high vacancy concen-
trations in borophene, the BFE model can accurately describe
the relationship between vacancy concentration and structural
stability, and it can reliably predict the most stable borophene
structure at the same concentration. The large discrepancy
at high concentrations could be due to the introduction of
the concept of compensating charge. As the vacancy concen-
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tration increases, the compensating charge becomes larger,
which may lead to a greater difference between the results of
the BFE model and DFT calculations.

Exceptionally, we choose the borophene with η = 1
6 to

investigate the polymorphism of borophene further. We start
from the borophene with η = 1

6 plotted in Fig. 5(b) as the
primitive cell and construct the supercell with the same
vacancy concentration along the horizontal direction to inves-
tigate whether there are long-periodic structures with lower
Fb-ave. As shown in Fig. 5(c), we find that the Fb-ave and
Eform gradually decrease with the multiple of primitive cell,
uncovering that the long-periodic borophenes are often more
stable than the short-periodic borophene. The DFT calcula-
tions have also confirmed the prediction that the four- and
eight-time supercells are more stable than the unit cell. In
Fig. 5(d), the S2 can be viewed as being composed of A and
B types of nanoribbons assembled, which will further increase
the bonding entropy and decrease the Fb-ave, contributing the
structural stability. S4, viewed as A-A-B-B type, exhibits a
higher degree of disorder, which increases the bonding en-
tropy and explains boron’s polymorphic nature.

Although the BFE model failed to accurately predict that
the energy of S4 in Fig. 5(c) is the lowest, it is still able to
identify the S4 structure as having the lowest energy within
the same supercell. Thus, for a given cell with specific vacancy
concentrations, the BFE model provides the correct ranking
trend for isomers of boron structures, which significantly en-
hances the screening efficiency.

IV. CONCLUSIONS

We propose a parameter-free statistical model for describ-
ing boron systems based on grand canonical ensemble theory,
combining the octet rule. The bonding free-energy (BFE)
model has perfectly described the electron density and the
total energies of boron systems. For the borane clusters, the
B-H bonds and B-H-B bonds are localized with full occu-
pation, and other delocalized B-B bonds are determined by
the BFE model, which has successfully predicted the isomer
energies of borane clusters as well as the hydrogen diffu-

sion energy pathway. For closo-BnHn molecule, our model
accurately reveals that adding two extra electrons maximizes
stability, demonstrating broad applicability. Without localized
B-H and B-H-B bonds, all-boron clusters have greater de-
grees of freedom, exhibiting stronger delocalization. The BFE
model provides a systematic understanding of the geomet-
ric structures and chemical bonding of size-selected boron
clusters, which is crucial for discovering new boron-based
nanostructures. The evolution as a function of size can be
described by the BFE model, which is ascribed to the elec-
tron density distribution, implying the polymorphism of boron
clusters. For borophene, periodic boundary condition induces
stronger electron delocalization and polymorphism. The dis-
tribution of hexagonal vacancies is determined by bonding
entropy, with uniform electron density contributing to struc-
tural stability. The origin of borophene’s polymorphism is
linked to the reduction of bonding entropy through electron
compensation. In particular, we demonstrate that borophene
with a vacancy concentration of 1

6 exhibits higher structural
stability, often associated with long-range periodicity. There-
fore, the BFE model can serve as a criterion for structure
prediction, providing deeper insights into the physical nature
of these structures.
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